I’d guess that most people feel guilty about not stretching enough.
Interestingly, health professionals have changed our tune about the importance of stretching. Research over the last 15 years has suggested static stretching is not as beneficial as was once thought. I’ve been having conversations about the reasons to stretch (or not) for at least the last 15 years, but the current science on stretching just isn’t catching on. So, what do we know?… DOES STRETCHING PREVENT INJURIES?
No. There is a lot of evidence that stretching does not reduce the risk of injury. This systematic review and meta-analysis of randomised controlled trials found stretching does not prevent injuries, whether done before or after training. This randomised controlled trial, and this systematic review concluded stretching before exercising only reduces the risk of injury by less than 1%.
Therefore, in practical terms the average athlete would need to stretch for 23 years to prevent one injury. Definitely not worth it. DOES STRETCHING HELP MUSCLE SORENESS?
No. A systematic review concluded that stretching before or after exercising does not confer protection from muscle soreness (ref). Stretching was found to reduce muscle soreness by a trivially small amount - less than 2%.
“Most athletes will consider effects of this magnitude too small to make stretching to prevent later muscle soreness worthwhile.”
DOES STRETCHING INCREASE RANGE OF MOVEMENT?
No. Stretching for the amount of time that most people would hold their stretches, does not make any actual difference to flexibility. The mechanisms of stretching have been extensively studied. There is moderate evidence from a systematic review that stretching can increase flexibility (ref). However, to achieve an actual improvement in muscle compliance we know the total duration of stretching needs to be at least five minutes per muscle group (ref). Therefore to stretch hamstrings, quads, and calves, both left and right, as part of a warm up before sport, it should take at least 30 minutes - which is practically impossible as part of a warm up. We know the one or two, thirty second stretches the majority of athletes would perform during their warm up are just not enough to actually improve their flexibility (ref).
DOES STRETCHING HELP PERFORMANCE?
What people find most surprising about static stretching is it impairs subsequent performance (ref).
A substantial body of research has shown that sustained static stretching acutely decreases muscle strength and power (ref). Stretching before an endurance event lowers endurance performance and increases the energy cost of running (ref). Cycling efficiency and time to exhaustion are reduced after static stretching (ref). Pretty much any measure of performance is made worse by stretching. Static stretching impairs:
A comprehensive review (ref) from 2011 concludes:
“Based on the majority of the literature, it would seem logical to recommend that prolonged static stretching not be performed prior to a high level or competitive athletic or training performance.”
WHAT ABOUT DYNAMIC STRETCHING?
Obviously, I’ve been talking about sustained, static stretching. It has been shown that there is no stretch-induced strength loss with dynamic stretching (ref). However, the efficacy of dynamic stretching for increasing flexibility is yet to be determined (ref).
SO WHY STRETCH?
I do get people to stretch if there’s a specific pathology that needs treating. And you do need to stretch if you need flexibility to achieve certain positions in your sporting performance (hurdlers / gymnasts / divers, etc).
SO SHOULD WE STOP STRETCHING?
If you’re happy with your stretching routine, keep doing it. If you think it feels good to stretch after exercise then there’s no harm. But I definitely wouldn’t recommend stretching at the expense of other techniques that are proven to aid recovery.
Do you love a good stretch?
|
I’ve been frustrated this week by a couple of patients with Achilles problems that I thought should recover well. They’ve disappeared to go and have an injection, against my recommendation. It’s made me think about whether or not I should have made the referral myself? What are our options for injections, and do they work?
|
TENDON PAIN
There are a range of commonly prescribed treatment options for tendinopathy, but very few are supported by quality, randomised, prospective, placebo-controlled trials.
SO WHAT DO I DO?
- load management, in combination with
- a strengthening program.
WHAT ABOUT INJECTIONS?
There are a range of drugs to inject into or around a tendon, depending on who you are referred to:
- Corticosteroid (A strong anti-inflammatory)
- Prolotherapy (An irritant to stimulate new tissue growth, e.g. hypertonic dextrose/glucose)
- Sclerotherapy (An irritant to decrease vascularisation, e.g. Polidocanol)
- Traumeel (A homeopathic preparation derived from arnica)
- Actovegin (derived from calf blood)
- Autologous blood (injecting your own blood into the tendon to promote healing)
- Platelet-rich plasma (blood is taken and PRP is extracted and injected to promote healing)
- High-volume injections (to damage the tissue and encourage new growth)
CORTICOSTEROIDS
PROLOTHERAPY / SCLEROTHERAPY
AUTOLOGOUS BLOOD INJECTIONS
HIGH-VOLUME INJECTIONS
PLATELET RICH PLASMA (PRP)
SO…
WHY DO THE INJECTIONS WORK FOR SOME PEOPLE?
REGRESSION TO THE MEAN
NATURAL HISTORY
PLACEBO
Injections are a powerful way to administer a placebo effect. You need to see a specialist to receive it. You need to pay more money. There’s some high-tech equipment spinning the blood. Everything is set up for you to expect improvement and, in a decent percentage of cases, that’s all it takes to get better. If you believe the injection will help you then it is much more likely to work. However, the research tells us it doesn’t really matter what substance is injected, it is your belief in whether or not it will help that is the variable more likely to determine the outcome.
|
SUMMARY
TL;DR
Have you had an injection for your tendon?
Adaptations to Training
When we train we want to cause stress to our body. (This may be our muscles, bones, cardiovascular system, etc.) We want to overload the system, which causes a degree of damage or micro-trauma. The body then responds by growing bigger / stronger / faster / fitter, so it can cope with that load in future. We cause stress to force adaptations.
Load
There are a number of variables that can be multiplied to determine the total load:
- Number of sessions per week
- Length of session
- Intensity of session
- Novel activity
- Bio-mechanical or environmental variables (eg, footwear, hills, ground surface)
The intensity of the activity is the most powerful multiplier in this list.
When we are considering total load, we also need to consider variables that make it harder for our bodies to adapt to load.
Variables that can be multiplied to determine how well we adapt to the load:
- Time between sessions
- Nutrition
- Hydration
- Stress
- Sleep
Recent research found that getting less than 8 hours sleep a day almost doubles the injury rate in athletes.
Injuries
- Tendon pain
- Stress fractures
Tendon pain is a failure of soft tissues to cope with muscular loading.
Stress fractures are a failure of the boney architecture to adapt to impact loading.
Load Management
We get in trouble when we have spikes of excessive load.
We may rapidly increase training levels in preparation for an event. This is a common cause of injury during pre-season training.
Or it could be a resumption of “normal” training after a period of rest. Unfortunately, the body quickly adapts to the lower levels, so what was normal is now excessive. This is a common mechanism of a new injury, having spent some time rehabbing a previous injury.
An otherwise normal load may become excessive if we are not eating, drinking, or sleeping well, or are stressed. It’s very common to see regular runners breaking down in December when they’ve been going to Christmas parties.
Injury Management
Of the total volume of work, I get patients to dial down the load by about a quarter, and stop the most aggravating activities – most likely the more demanding / explosive activities: hopping, skipping, jumping, sprinting, hills, plyometrics. So usually total rest isn’t required.
Patients can keep going with their cardio, but possibly trial a lower impact, cross-training option.
Have you had an injury from excessive load?
What was your experience?...
HEEL PAIN IN CHILDREN
OVERUSE INJURY
- number of sessions
- length of sessions
- pace of running
- hills
- novel activity
- footware
- ground surface
I think the running pace is the more powerful multiplier in this list. Extra sprint sessions will do it. My kids got sore once when we did a boot-camp session with a novel plyometric exercise - split jumps.
There are also “internal” variables that determine our ability to cope with the training load:
- nutrition
- stress
- sleep
- growth spurts
My kids definitely are more prone to Sever’s if they’ve had a couple of late nights that week. And, if they’re having a growth spurt, their bodies are busy spending resources on growing rather than recovering from the stress of a training session.
NATURAL RECOVERY
WHAT DO WE DO?
I get them to do an isometric Achilles strengthening program which also helps with pain control.
But ultimately recovery comes down to load management.
Load management means reducing the excessive loads. So this could be:
- less sessions/week
- shorter sessions
- less sprint work
- run in joggers rather than spikes or footy boots
- less hills
- heel wedges in shoes
- stay in shoes - no bare feet / thongs / flats. I really like them to stay in some sort of shoe with a heel all the time. Even if they’re getting up to use the bathroom I want them to slip their joggers on.
And aid recovery with:
- plenty of sleep
- massage calf muscles
- ice and Ibuprofen for pain relief when sore
HAVE YOU HAD A CHILD WITH SEVER’S DISEASE?
ACL Rehabilitation Guide (available here)
A criteria driven ACL rehabilitation protocol and guide for both clinicians and people who have undergone a surgical reconstruction of the Anterior Cruciate Ligament (ACL).
Author: Randall Cooper
I was thinking about what frustrates me about physiotherapy. What are the things that physios do that confuse me? If I was a patient, what would stop me coming back?
What I don't like is physios that make things super complicated. I'm not sure if that helps position them as an "expert", meaning you've got to pay them because you absolutely can't help yourself. Or it may be that they don't completely understand what they're talking about so can't explain it well. But I don't like smoke and mirrors. I think physio can be pretty simple.
This leads me to ask - if I boil it down, what are the most important things I do to help you recover from your injury?
I think it comes down to two key components:
- You need to understand what's wrong. I need to explain some complicated stuff to you in a way that my Nanna or my kids could understand. If you understand what's going on, you'll understand why it's important to do what I ask you to do to get yourself better.
- What are the one or two most important things you need to do? If it was just one thing, what would you do? Best bang for your buck?
Usually the most important thing comes down to you doing a stretch or strengthening exercise at home. More often than not it's you consistently making small gains with a home program that makes the biggest difference to your recovery. Not anything miraculous that I can do to you here.
If it's super important, why do some people do their home exercise and others don't? Life gets in the way. It's hard to remember. You've got better things to do.
So, I need to make it as easy as possible for you. That's my job. That's why I'm better than just googling it.
I understand that small stuff gets in the way. You remember to do the exercise when you're in the car and can't do it. Before you know it, you get to the end of the day and it's not been done. There's lots of little things that make a home exercise program hard to do "now" - meaning you leave it for "later". If you have to get on the floor you'll do it "later". If there's too many exercises to do, you'll do it "later". If you have to use equipment - it's not on hand. Any little barrier to getting it done means it doesn't get done. It needs to be easy.
So my practical solution for your recovery comes back to: WHAT WOULD I REALISTICALLY DO MYSELF?. It's lucky I've had a few injuries and have learnt what's realistic and what's not. If I had your injury, what is the one thing I would actually, realistically do myself?
I think that is a great question for all healthcare professionals. Because we know that around 40% of our health budget is wasted on unnecessary tests and treatments. Unnecessary healthcare expenses add up to $45 billion/year in Australia. It is amazing how many things healthcare practitioners recommend to patients that they wouldn't do themselves.
I think we could save a lot of time, effort, and money if all health practitioners had a tick box to sign-off on all investigations and treatments - Would they do it themselves?
So that's what I give you. Things that I would do. I understand what is practical and realistic.
Simple Explanations + Practical Solutions = Happy You!
Monitoring athletes' response to training is crucial for improving performance and avoiding injury.
Elite level sport utilises an increasing number of ways to measure athlete well-being. Batteries of tests are packaged into commercial products attracting premium fees. This is justifiable if you are Sydney Swans or Liverpool FC, but where does that leave the rest of us? Are we missing out if we're not testing cortisol levels to know if we are over-training?
A recent paper carried out a systematic review where objective measure, such as:
- blood markers - hormonal / inflammatory / immune response
- heart rate
- oxygen consumption
- heart rate response
- mood
- perceived stress
The researchers concluded that the:
- Subjective measures responded well to training-induced changes in athlete well-being.
- Subjective well-being typically worsened with an acute increase in training load and with a chronic training load; and improved with an acute decrease in training load.
- Subjective measures for routine athlete monitoring are relatively cheap and simple to implement.
- Subjective measures are useful for athlete monitoring, and practitioners may employ them with confidence.
Knee and ankle injuries are common in netball, making up three quarters of all injuries. Devastating ACL injuries are unfortunately common, making up 25% of serious injuries.
The KNEE program offers a range of warm-up exercises that help prevent injury. There are a range of age and experience appropriate exercises for junior through to elite netballers. They are easily understood by players and coaches, with a number of options offering variability and progression.
It would be great to see this program widely adopted by Australia's largest participation sport for females.
Load Management For Injury Prevention
Managing training load is crucial in injury prevention and treatment. A graphic in Tom Goon’s recent blog visualises how training load outweighs all other factors.
Historically we have advised that training loads shouldn’t increase by more than 10% a week. I’m not sure where this figure comes from. I’ve got no problem with it, it seems reasonable, and I’ve quoted it hundreds of times.
There’s a recent BJSM podcast interview with Tim Gabbett on load management for injury prevention. Specifically Tim talks about this paper:
- Billy T Hulin, Tim J Gabbett, Peter Blanch, Paul Chapman, David Bailey, John W Orchard, 2013.
It is research into fast bowlers but I think the principles apply just as well to any athlete.
They measured the acute workload of the last 7 days (and call it “fatigue”) and compare that to the chronic workload of the previous 4 weeks (which they call “fitness”).
Measuring Training Load
Or we could be more accurate and account for a mixed training program that may include a variety of hills / sprints / cross training etc, by giving each session a rate of perceived exertion (RPE) out of 10, and multiply that score by the number of training minutes:
The research subtracted the current 1-week average from the previous 4-week average and called this number the “training-stress balance”.
A negative training-stress balance increases the risk of injury 4 times.
So:
Negative balance = 4 times risk of injury
For people that may be more vulnerable to injury I would change the 4-week average to a 6-week average, therefore, bringing the increase in load each week down from 25% to 16%.
This more cautious group could include:
- Pre-season training
- Kids going through growth spurts
- Athletes returning from injury
- Known history of over training injuries
- People without any training history
- Novel exercise modality
TLDR Summary:
- The rate of hamstring injuries is as bad as it’s always been, and the recurrence rate remains high.
- Central tendon injuries and over-stretch style injuries (proximal semaimembranosous tendon) take longer to return to play than the more common sprinting style injury (long head of biceps femoris).
- Strengthening based rehab should be performed in a lengthened position.
- No evidence to support PRP injections for hamstring injury.
- Nordic curls are effective at preventing hamstring injury.
- The volume of muscle injured, as measured on MRI, does not predict the prognosis for the time taken to return to play (RTP).
- Self-predicted time to RTP is reasonably accurate.
- Biceps femoris injuries have a high recurrence rate.
- Eccentric hamstring strength is reduced even after RTP.
Recommendations:
- Early reduction of pain (to decrease muscle inhibition).
- Early muscle activation.
- Eccentric exercise at longer muscle lengths.
- Early return to running.
- Rapid progression to high-speed running.
Example Exercises:
After an initial ankle sprain, athletes are prone to re-injury of the same ankle. The risk of suffering an ankle sprain is doubled in the year following initial injury.
Common interventions aimed at preventing ankle sprains include taping, bracing, muscle strengthening, and balance training.
Taping and bracing have shown to be effective prevention for ankle sprains, however disadvantages include hindering performance, loosening with activity, and skin irritation.
A 2015 systematic review and meta-analysis from La Trobe University has concluded that balance training programmes are effective at reducing the rate of ankle sprains in sporting participants, particularly those with a history of ankle sprains.
Approximately 17 sporting participants, or 13 participants with a history of ankle sprain need to undergo balance training in order to prevent one future ankle sprain.
It’s theoretically possible to return to play as soon as you’re able to stand up again, but obviously there’s a high chance of injury aggravation &/or recurrence. So, successful return to play isn’t just getting back on the field, but also doing our best to make sure:
- your performance is up to standard
- and the injury doesn’t happen again.
For a lot of injuries we can agree on a rough timeframe of recovery based on our previous experience with similar injuries, and a known pattern of tissue healing. However, time alone is only a small component in determining successful return to play.
This article (Creighton, 2010) outlines the extensive range of other considerations for negotiating a successful return to play:
After assessing an injury I like to outline the milestones that are necessary to achieve a successful return to play.
Physical factors may include:
- Pain is tolerable
- Swelling / effusion has gone down
- Strength is similar to the other side
- Range of movement is similar to the other side
This guides our treatment & gives us goals to work on with rehab, which may include:
- Stretches
- Strengthening
- Tissue healing
- Pain modulation
Functional milestones need to be achieved sequentially. You need to pass one level to get to the next.
Roughly, this might look like:
- Walk without limping &/or pain
- Hop
- Jog
- Run
- Sprint
- Non-contact training
- Train with contact
- Play
Progression through each of these functional stages may include:
- Increasing volume
- Increasing intensity
- Introducing hills
- Second daily running
- Two days on, one day off
- Daily running
By the time we return to the playing field we have confidence in the injury because we’ve done the work. Doing the rehab in a graded, progressive manner serves two purposes:
1). The exercise is conditioning, or “mechanotherapy”, to aid recovery.
2). It serves as a screening program, answering the question “am I OK to return to play?”.
Doing the rehab gives us confidence that you’re OK to do “Z” because you’ve successfully completed “W”, “X”, & “Y”.
Here is a graded, progressive running program I like you to progress through before returning to training.
Here is a graded, progressive rehab programs for throwing & a similar rehab program for kicking.
Injury Recurrence
We know the biggest risk factor for any injury is a previous history of the same injury. That means once you’ve had an injury, you’re at risk of re-injury.
So successful return to play must include rehab aimed at preventing the same thing happening again. This might include specific stretching, strengthening, taping, bracing, proprioception, or skills. The job is only half done if you’re still at risk.
Archives
May 2023
April 2023
March 2023
February 2023
January 2023
December 2022
November 2022
October 2022
September 2022
August 2022
July 2022
June 2022
May 2022
April 2022
March 2022
February 2022
January 2022
December 2021
November 2021
October 2021
September 2021
August 2021
July 2021
June 2021
May 2021
April 2021
March 2021
February 2021
January 2021
December 2020
November 2020
October 2020
September 2020
August 2020
July 2020
June 2020
May 2020
April 2020
March 2020
February 2020
December 2019
November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
May 2016
April 2016
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
Categories
All
Achilles
ACL
Active Transport
Acupuncture
Ageing
AHPRA
Alcohol
Ankle
Ankylosing Spondylitis
Apps
Arthritis
Arthroscopy
#askyourphysio
Babies
Backpacks
Back Pain
Blood Pressure
BMI
Body Image
Bunions
Bursitis
Cancer
Chiro
Chiropractic
Cholesterol
Chronic Pain
Concussion
Copenhagen
Costochondritis
Cramp
Crossfit
Cycling
Dance
Dementia
Depression
De Quervains
Diet
Dieting
Elbow
Exercise
Falls
Fat
Feet
Fibromyalgia
Fibula
Finger
Fitness Test
Food
Foot
Fracture
Fractures
Glucosamine
Golfers Elbow
Groin
GTN
Hamstring
Health
Heart Disease
Heart Failure
Heat
HIIT Training
Hip Fracture
Hydration
Hyperalgesia
Ibuprofen
Injections
Injury
Injury Prevention
Isometric Exercise
Knee
Knee Arthroscopy
Knee Replacement
Knees
LARs Ligament Reconstruction
Lisfranc
Load
Low Back Pain
Massage
Meditation
Meniscus
Minimalist Shoes
MRI
MS
Multiple Sclerosis
Netball
Nutrition
OA
Obesity
Orthotics
Osgood-Schlatter
Osteoarthritis
Osteopath
Osteoperosis
Pain
Parkinsons
Patella
Peroneal-tendonitis
Physical-activity
Physio
Physio Mosman
Pigeon-toed
Pilates
Piriformis
Pokemon
Posture
Prehab
Prolotherapy
Pronation
PRP
Radiology
Recovery
Rehab
Rheumatoid
Rheumatoid-arthritis
Rotator Cuff
RTP
Rugby
Running
Running Shoes
Scan
Severs
Shin-pain
Shoes
Shoulder
Shoulder Dislocation
Sitting
Sleep
Soccer
Spinal-fusion
Spondyloarthritis
Spondylolisthesis
Sports Injury
Sports Physio
Standing
Standing-desk
Statins
Stem-cells
Stress Fracture
Stretching
Sugar
Supplements
Surgery
Sweat
Tendinopathy
Tendinosis
Tendonitis
Tmj
Treatment
Vertigo
Walking
Warm-Up
Weight Loss
Wheezing
Whiplash
Wrist
Yoga